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Abstract

The present paper highlights the importance of management of the discontinuous reconstruction in the kinetic

schemes for gasdynamic equation systems. Firstly, it is revealed by the analysis of the gas kinetic-BGK scheme [JCP 171

(2001) 289] that a continuous reconstruction created from a discontinuous one is a key to the successful kinetic schemes.

When it is applied to a well-resolved region, the numerical flux that takes account of the collision effect correctly be-

comes Lax–Wendroff-like. When it is applied to an unresolved region, such as a shock layer, an appreciable numerical

dissipation, which contributes to the suppression of spurious oscillations, is produced. Secondly, new kinetic schemes

for the compressible Navier–Stokes (Euler) equations are developed by using the key. The numerical flux of one of the

schemes is computed by using the splitting algorithm, where the effect of the molecular collision is directly taken into

account and the undesirable error of the splitting algorithm in the case where the time step is much larger than the mean

free time is avoided by a simple modification of the initial data. Although a discontinuous reconstruction is employed in

the approximation of the initial data, the continuity is automatically taken into account in the dominant part of the

numerical flux. The other schemes are the extensions of the Lax–Wendroff-type scheme to the case of the key recon-

struction. Thirdly, the performance of these schemes is tested. It is demonstrated that they work as shock capturing

schemes and yield fine boundary-layer profiles with a reasonable number of cells, such as 10 cells in the layer.
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1. Introduction

A finite volume method for a macroscopic equation (system) is called kinetic if the numerical flux is

computed from the solution of Cauchy problem of a kinetic equation. The equilibrium flux method
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(EFM) for the compressible Euler equations developed by Pullin [11] is one of the origins of such

schemes. It inherits the legacy of the Chapman–Enskog expansion for the Boltzmann equation; the zero-th

order approximation of the distribution function (the local Maxwellian) is employed as the initial data.
It also inherits the heritage of the direct simulation Monte-Carlo (DSMC) for the Boltzmann equation

developed by Bird [2]. The DSMC is based on the splitting algorithm and consists of the free flow step

solving the collisionless Boltzmann equation and the collision step solving the spatially homogeneous

Boltzmann equation. The numerical flux of the EFM is computed from the solution of the collisionless

Boltzmann equation, which corresponds to the free flow step. Then, the values of the conservative

variables are updated and the new local equilibrium state is reconstructed in each cell, which corre-

sponds to the collision step for the time step being much larger than the mean free time. Aristov and

Tcheremissin extended Pullin�s approach to the case of the compressible Navier–Stokes equations [1];
the initial data is changed from the local Maxwellian to the Chapman–Enskog NS distribution function

(the first order approximation) but the relaxation is treated implicitly in each cell as in the case of the

original Euler solver. Since this scheme employs the mesh points in the molecular velocity space, it is not

efficient. This drawback was removed by Chou and Baganoff and the resulting mesh-less version is called

the kinetic flux vector splitting (KFVS) scheme for the compressible Navier–Stokes equations [4]. Al-

though Pullin�s approach works very well as a shock capturing scheme, a fine viscous boundary-layer

profile is never obtained with a reasonable number of cells, such as 10 cells in the layer, while the

classical Lax–Wendroff scheme works very well under the same resolution. This mysterious retrogression
has not attracted a lot of attention, however.

In [9,10], the senior author (T.O.) developed a method for the construction of kinetic schemes. This

method, which we call the railroad method, derives the basic kinetic equation employed in the construction

of the NS solvers as the kinetic equation for the Chapman–Enskog NS distribution function the macro-

scopic variables of which satisfy the corresponding NS equations; the relation between the resulting scheme

and the macroscopic equation (NS) is direct and obvious by construction. The kinetic equation so derived

has the collision term and the inclusion of the collision effect in the numerical flux contributes to the im-

provement of the accuracy. In fact, a kinetic solution with the collision effect yields the Lax–Wendroff-type
scheme in the case of piecewise-linear reconstruction with smoothness at cell interfaces [10,13], i.e. the

simple connection of cell-averaged values, and the part of the numerical flux corresponding to the collision

effect removes an excess of the numerical dissipation of the splitting algorithm.

The reconstruction of the initial data that allows discontinuities at cell-interfaces is an important heritage

in the CFD community and is also employed in the existing kinetic schemes, such as the KFVS scheme and

Xu�s gas-kinetic BGK (GKB) scheme [15]. Owing to the kinematic dissipation created by the discontinuity

and the use of nonlinear limiter, they work as shock capturing schemes. While the KFVS scheme is not

successful in the boundary-layer problem, the GKB scheme yields a fine boundary-layer profile with a
reasonable number of cells in the layer. It is explained in [15] that this is owing to the inclusion of the

collision effect in the numerical flux. As will be shown later, however, the essential reason does not lie in the

inclusion of the collision effect but in the management of the discontinuous reconstruction in the evolution

stage.

The present paper highlights the importance of management of the discontinuous reconstruction in the

evolution stage. The organization of the paper is as follows. In Section 2, we summarize the formulas

obtained by the railroad method. In Section 3, we extend the formulas to the case of discontinuous initial

data straightforwardly, i.e. the simple flux splitting according to the direction of the characteristic line of
the kinetic equation. It will be shown that the simple extension does not work well in the boundary-layer

problem because of the kinematic dissipation created by the discontinuous reconstruction. In Section 4, we

analyze the GKB scheme and reveal that a continuous reconstruction created from a discontinuous one is

the essential key of the scheme. On the basis of this key, we derive new kinetic schemes. They are validated

in some typical test cases. The importance of management of the discontinuous initial data becomes more
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striking in the steady case, which is discussed in Section 5 together with the future extension of the present

study.
2. Theory

In this section, we summarize the formulas of the railroad method for the compressible Navier–Stokes

(Euler) equations [9,10].

The main notation employed in the paper is as follows. The L is the reference length of the system under

consideration; q0 and T0 are the reference density and temperature; l0 is the mean free path of the gas

molecules for the equilibrium state at rest with the density q0 and the temperature T0; � ¼
ffiffiffi
p

p
l0=ð2LÞ; Lxi is

the space coordinate system; ð2RT0Þ1=2fi is the molecular velocity, where R is the specific gas constant;

Lð2RT0Þ�1=2t is the time; q0ð2RT0Þ
�3=2f ðxi; t; fiÞ is the distribution function of the gas molecules; q0q,

ð2RT0Þ1=2ui, T0T , and P0P (P0 ¼ Rq0T0 and P ¼ qT ) are the density, flow velocity, temperature, and pressure

of the gas, respectively.

For simplicity, we explain the railroad method for the compressible Navier–Stokes equations derived

from the BGK equation. The nondimensional BGK equation is written as

of
ot

þ f
of
ox

¼ 1

�
QBGKðf Þ; ð1Þ
QBGKðf Þ ¼ qðf0 � f Þ; ð2Þ

where f0 is the local Maxwellian defined by

f0 ¼
q

ðpT Þ3=2
expð�C2Þ; ð3Þ

Ci ¼ ðfi � uiÞ=T 1=2, C2 ¼ C2
k , and the nondimensional macroscopic variables h ¼t ðq; qu1; qu2; qu3; 3qT =2þ

qu2kÞ are given by

h ¼
Z

wf df; ð4Þ
w ¼t ðw0;w1;w2;w3;w4Þ ¼t ð1; f1; f2; f3; f2kÞ: ð5Þ

Eq. (1) contains the parameter �, which is proportional to the ratio of the mean free path l0 to the char-

acteristic length L. The collision frequency of the BGK equation is given by Acq0q, where Ac is a constant (it

may depend on the temperature of the gas but it is treated as a constant in the present paper), and l0 is given
by l0 ¼ 2p�1=2A�1

c q�1
0 ð2RT0Þ1=2. The collision term QBGK satisfies the orthogonality condition:Z

wQBGKðf Þdf ¼ 0: ð6Þ

The Chapman–Enskog expansion derives the distribution function in the form:

f ðx; t; nÞ ¼ f0ðh; nÞ þ �f1ðh;rh; nÞ þ �2f2ðh;rh;r2h; nÞ þ � � � ; ð7Þ

wherer is the abbreviation of differential operators with respect to xi. The f0 is the local Maxwellian and f1
gives the viscous stress tensor and heat flow vector in the NS equation. The coefficients fk (k ¼ 1; 2; . . .) are
orthogonal to w:
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Z
wfk df ¼ 0 ðk ¼ 1; 2; . . .Þ: ð8Þ

In this expansion, the conservation equations are also expanded:

oh

ot
¼ U0 þ �U1 þ �2U2 þ � � � ; ð9Þ

where the coefficients are given by

Uk ¼ �
Z

fjw
ofk
oxj

df: ð10Þ

The zero-th order approximation of the conservation equations is the compressible Euler equation system

and the first order approximation is the compressible Navier–Stokes system. The explicit forms of f1 andUi

(i ¼ 0; 1) are found elsewhere, e.g. in [10].

The kinetic equation employed in the construction of NS solver is derived in the following way. Consider

the distribution function

f ðx; t; nÞ ¼ f0ðh; nÞ þ �f1ðh;rh; nÞ; ð11Þ

the macroscopic variables of which satisfy the compressible NS equations

oh

ot
¼ U0 þ �U1: ð12Þ

Substituting the above distribution function into ðot þ fj oxjÞf and employing Eq. (12) as the converter from

the time derivative to the space derivatives, we have

of
ot

þ f
of
ox

¼ of0
oh

U0 þ f
of0
ox

þ �
of0
oh

U1

�
þ of1

oh
U0 þ

of1
orh

rU0 þ f
of1
ox

�
þ �2

of1
oh

U1

�
þ of1
orh

rU1

�
: ð13Þ

Eq. (13) is nothing more than the result of computation. From now on, we regard it together with the
definition of h as the evolutionary equation for f . Eq. (13) is rewritten in the form:

of
ot

þ f
of
ox

¼ Qðf Þ ¼
X2
k¼0

�kQkðf Þ: ð14Þ

For the BGK equation, Q0ðf Þ is given by �qf1, i.e.

of0
oh

U0 þ f
of0
ox

¼ �qf1; ð15Þ

and Q1ðf Þ is given by �qf2. The collision terms Qkðf Þ satisfy the orthogonality conditionZ
wQkðf Þdf ¼ 0 ðk ¼ 0; 1; 2Þ; ð16Þ

which follows from Eq. (8). By taking the moments of the solution of Eq. (13) from the initial data in the

form of Eq. (11), we have the solution of the NS equation (12) from the macroscopic initial data corre-

sponding to Eq. (11). Since the contribution of Qðf Þ to hðx;DtÞ is OðDt2Þ, we can simplify the kinetic

equation. In the present study, we employ the following simplified kinetic equation
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of
ot

þ f
of
ox

¼ �qf1: ð17Þ

The difference between the macroscopic variables for the solution of this simplified kinetic equation and

the exact solution of the NS equation at t ¼ Dt is Oð�Dt2Þ [10]. This is the intrinsic error of the railroad and

is effectively high order for �KDt. Incidentally, the simplified kinetic equation (17) is independent of the

molecular model and the solution from the initial data in the form of f ¼ f0 constitutes the exact railroad
for the compressible Euler equation.
3. Preliminary schemes

In this section, we prepare four preliminary kinetic schemes for the compressible NS (Euler) equations.

3.1. Construction of schemes

In order to avoid unessential complexity, all the following explanations are for the spatially one-di-
mensional case; the physical quantities are independent of x2 and x3. The extension to multidimensional

case can be done without using any special technique and its explanation is omitted in this paper.

Multiplying Eq. (17) by w and integrating the result over the whole velocity space R3, the cell

ðsj�1=2; sjþ1=2Þ for x1, and the time interval ð0;DtÞ, we have

hjðDtÞ ¼ hjð0Þ �
1

Dx
½Fjþ1=2 � F j�1=2�; ð18Þ

where hjðtÞ is the average of hðx1; tÞ over the cell ðsj�1=2; sjþ1=2Þ, Dx ¼ sjþ1=2 � sj�1=2, and F jþ1=2 is the nu-
merical flux at x1 ¼ sjþ1=2, which is defined by

F jþ1=2 ¼
Z Dt

0

Z
wf1f ðsjþ1=2; t; fiÞdfdt: ð19Þ

Since Q0ðf Þ satisfies the orthogonality condition (16), no source term appears on the right hand side of

Eq. (18).

In order to derive the formula of the numerical flux, we approximate the solution of the Cauchy problem

for Eq. (17) from the initial data in the form of Eq. (11). The error of the numerical flux becomes the same

order as that of the intrinsic error of the simplified railroad, Oð�Dt2Þ, if the approximate solution with the
collision term

f ðsjþ1=2; t; fÞ ¼ f0 � tf1
of0
ox1

þ �f1 � tqf1; ð20Þ

is employed, where f0, its derivative, f1, and q on the right hand side are evaluated at ðx1; tÞ ¼ ðsjþ1=2; 0Þ (this
rule will be applied to all the following formulas for f employed in the computation of the numerical flux).

The scheme becomes visible when the way of reconstruction of the initial data is specified. Here, we

consider two typical reconstructions for uniform Dx. The first reconstruction is the piecewise-linear dis-

tribution with smoothness at cell interfaces (the simple connection of cell-averaged values):

Reconstruction-I

hðx1Þ ¼
hj þ ðhjþ1 � hjÞðx1 � sjÞ=Dx; for sj 6 x1 6 sjþ1=2;
h þ ðh � h Þðx � s Þ=Dx; for s 6 x 6 s ;

�
ð21Þ
j j j�1 1 j j�1=2 1 j
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where sj is the center of the cell ðsj�1=2; sjþ1=2Þ. The second reconstruction is the piecewise linear distribution

that allows the discontinuity at cell interfaces:

Reconstruction-II

hðx1Þ ¼ hj þ
hjþ1 � hj�1

2Dx
ðx1 � sjÞ ðsj�1=2 6 x1 6 sjþ1=2Þ; ð22Þ

where the slope is computed by the central finite difference approximation. These two reconstructions are

shown schematically in Fig. 1 together with Reconstruction-III, which will be introduced in Section 4. The

above reconstructions can also be applied to the primitive variables q, ui, and T .
We employ the superscript �I� to express the terms at ðx1; tÞ ¼ ðsjþ1=2; 0Þ evaluated by Reconstruction-I.

Then, Eq. (20) for Reconstruction-I is written as

f ðsjþ1=2; t; fÞ ¼ f I
0 � tf1

of0
ox1

� �I

þ �f I
1 � tqIf I

1 : ð23Þ

A simple way of the extension of Eq. (20) to the case of Reconstruction-II is the flux splitting according

to the direction of the characteristic line (the sign of f1). We employ the superscript �II� to express the terms

at ðx1; tÞ ¼ ðsjþ1=2; 0Þ for this approximation, i.e.

gIIðsjþ1=2; fÞ ¼ gðsjþ1=2 � 0; fÞ ðfor f1 ? 0Þ: ð24Þ

Then, the simple extension of Eq. (20) to the case of Reconstruction-II is given by

f ðsjþ1=2; t; fÞ ¼ f II
0 � tf1

of0
ox1

� �II

þ �f II
1 � tqIIf II

1 ; ð25Þ

where

qII ¼ qðsjþ1=2 � 0Þ ðfor f1?0Þ: ð26Þ

For comparison, we prepare the formula without the collision effect

f ðsjþ1=2; t; fÞ ¼ f II
0 � tf1

of0
ox1

� �II

þ �f II
1 ; ð27Þ

and that without the collision effect and the derivative

f ðsjþ1=2; t; fÞ ¼ f II
0 þ �f II

1 : ð28Þ
hj

hj-1

hj+ 1

hIII
j-1/2

hIII
j+ 1/2

sj-1/2 sj+1/2

Fig. 1. The schematic figure of reconstruction. (––) Reconstruction-I, (– – –) Reconstruction-II, and (� � �) Reconstruction-III (Section 4).
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We have prepared four formulas of the kinetic solution, which are employed in the computation of the

numerical flux. We will call the resulting schemes Scheme-A to Scheme-D, i.e. Scheme-A for Eq. (23),

Scheme-B for Eq. (25), Scheme-C for Eq. (27), and Scheme-D for Eq. (28). Incidentally, Scheme-A is the
well-known Lax–Wendroff-type scheme with the central finite difference approximation of the viscous and

heat conduction terms [10] (see also [13] for the compressible Euler equations), Scheme-D is called the first

order KFVS scheme, and Scheme-C is called the second order KFVS scheme.

3.2. Numerical tests of preliminary schemes

The first numerical test is the problem of structure of a normal shock wave. Fig. 2 shows the result of

Scheme-D for the case where the upstream Mach number is equal to 3. The computation was carried out
for Dx ¼ 0:25 (L ¼

ffiffiffi
p

p
l0=2, l0 is the mean free path of the gas molecules at upstream condition) and

Dt ¼ Dx=50; nonlinear limiter was not employed. Scheme-A to Scheme-D yield almost the same results,

which agree very well with the standard solution of the NS equations [5]. The inclusion of the collision effect

does not contribute to the improvement of the accuracy for the case where � is effectively of the order of

unity since the error of the numerical flux of Scheme-B becomes OðDt2Þ. This test case is for the demon-

stration that Scheme-A to Scheme-D are the NS solvers. Of course, the NS solution is not physically correct

except for the case of weak shock, i.e. 0 < M � 1 � 1, where M is the upstream Mach number; the NS

solution for weak shock agrees with the solution of the Boltzmann equation only up to the order of M � 1
[7].

The second numerical test is done in the problem of the Blasius flow. The computational domain is the

rectangle of [�40:046 x1 6 107:28, 06 x2 6 29:78] and is divided into (120� 30) cells with the minimum cell

size Dxmin
2 ¼ 0:0252 around x2 ¼ 0; the plate is located at (x2 ¼ 0, 06 x1). The nonslip boundary condition is

imposed at the plate surface; the specular reflection boundary condition is imposed along (x2 ¼ 0, x1 < 0);

the simple inflow boundary condition is imposed at the left boundary; and the other boundary conditions

(right and top) are given by the simple extrapolation. The numerical computation was carried out for the

upstreamMach numberM ¼ 0:15 and � ¼ 3:2348� 10�4; nonlinear limiter was not employed. Incidentally,
the Reynolds number Re based on the plate length in the computational domain LLp (Lp ¼ 107:28), the flow
speed, and the viscosity at upstream condition, i.e. Re ¼

ffiffiffiffiffiffiffiffiffiffi
10=3

p
ðMLp=�Þ, is equal to 1:02� 105. Figs. 3–5

show the results of Scheme-A to Scheme-C for (120� 30) cell system and the time step Dt ¼ 0:01. Each
component of the normalized flow velocity, ðU ; V Þ ¼ ðu1ðx1; gÞ=U1; u2ðx1; gÞ=u2ðx1; g ¼ 1ÞÞ, where g is the
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Fig. 2. The normalized density ~q, flow speed ~u1, and temperature ~T of the shock wave for M ¼ 3. The symbols indicate the result of

Scheme-D and the solid lines indicate the exact solution of the NS equations [5].
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Fig. 3. Blasius flow. The results of Scheme-A for 120� 30 cell system and Dt ¼ 0:01. The dashed lines indicate the exact solutions, the

symbols s indicate the numerical result along x1 ¼ 6:436, and the symbols � indicate that along x1 ¼ 34:469.
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Fig. 4. Blasius flow. The results of Scheme-B for 120� 30 cell system and Dt ¼ 0:01.
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Fig. 5. Blasius flow. The results of Scheme-C for 120� 30 cell system and Dt ¼ 0:01.

T. Ohwada, S. Kobayashi / Journal of Computational Physics 197 (2004) 116–138 123



124 T. Ohwada, S. Kobayashi / Journal of Computational Physics 197 (2004) 116–138
similarity variable defined by g ¼ ð10=3Þ1=4ðM=�Þ1=2x2x�1=2
1 and U1 ¼

ffiffiffiffiffiffiffiffi
5=6

p
M , is plotted as a function of g.

In these figures, the dashed lines indicate the exact solutions, the symbols s indicate the numerical result

along x1 ¼ 6:436, and the symbols � indicate that along x1 ¼ 34:469; U1 ¼ 0:1369, u2ðx1 ¼ 6:436;
g ¼ 1Þ ¼ 1:5� 10�3, and u2ðx1 ¼ 34:469; g ¼ 1Þ ¼ 6:4� 10�4. While the boundary-layer profile obtained

by Scheme-A (Lax–Wendroff) is excellent, those obtained by Scheme-B to Scheme-D, which employ Re-

construction-II, are very poor. Fig. 6 shows the result of Scheme-B for the finer cell system (120� 120), i.e.

the number of cells in the direction normal to the plate is four times larger than that of the original cell

system (Dt is decreased to 0.0025 accordingly). The result of Scheme-B is greatly improved. This is not due

to the decrease of dynamical dissipation; no improvement was observed for the original (120� 30) cell

system even if Dt is decreased. For the original (120� 30) cell system, the shape of boundary-layer profile

made by Reconstruction-II is sawteeth-like with deep ditches, while Reconstruction-I gives a reasonable
approximation. Thus, we conclude that the discrepancy shown in Fig. 4 (Scheme-B) is due to the kinematic

dissipation created by the discontinuous reconstruction. Fig. 7 shows the result of Scheme-C for the finer

cell system (Dt is decreased to 0.0025 accordingly). The result is still poor. This is due to the dynamical

dissipation caused by the lack of the collision effect. If the time step is further reduced, e.g. Dt ¼ 0:0001, the
result of Scheme-C finally agrees with the exact solution (no figure). Incidentally, the result of Scheme-D is
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Fig. 6. Blasius flow. The results of Scheme-B for 120� 120 cell system and Dt ¼ 0:0025.
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Fig. 7. Blasius flow. The results of Scheme-C for 120� 120 cell system and Dt ¼ 0:0025.
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almost the same as that of Scheme-B (no figure). The reason for the mysterious reversion will be revealed in

Section 5.
4. Management of discontinuity

As mentioned in Section 1, the GKB scheme works as a shock capturing scheme and yields a fine

boundary-layer profile with a reasonable number of cells. In the GKB scheme, the numerical flux is

computed from the solution of the BGK equation and the collision effect is explicitly taken into account

there. This is in contrast to Pullin�s approach, which employs the collisionless Boltzmann equation. The

GKB scheme employs Reconstruction-II in the approximation of the initial data. If Reconstruction-I is
employed instead of Reconstruction-II, the formula of the numerical flux coincides with Eq. (23). So, this

scheme is regarded as an extension of Scheme-A to the case of discontinuous initial data. However, Xu�s
derivation of the scheme is not along this line and which part makes the scheme so successful in the

boundary-layer problem is not obvious. In this section, we first derive the GKB scheme as an extension of

Scheme-A (Section 4.1). From the analysis of numerical flux (Section 4.2), we reveal that the key lies in the

management of the discontinuity. In Section 4.3, we develop new kinetic schemes using the key. The

performance of these schemes is tested in Section 4.4. A promising hybrid scheme is finally proposed in

Section 4.5.

4.1. Derivation of GKB scheme

Step 1 (BGK equation with locally constant collision frequency). In Section 3, we considered the Cauchy

problem of Eq. (17) from the initial data in the form of Eq. (11) to derive the formulas of the numerical flux.

As mentioned in [10], the order of intrinsic error of the scheme, i.e. Oð�Dt2Þ, does not change even if the

BGK equation is employed instead of Eq. (17). Further, we notice that the density q in the collision fre-

quency can be fixed to the value for the initial data at the cell-interface without the loss of accuracy. That is,
Eq. (20) is obtained as an approximate solution of the Cauchy problem for the BGK equation with the

locally constant collision frequency

of
ot

þ f1
of
ox1

¼ q�
�
ðf0 � f Þ; ð29Þ

from the initial data in the form of Eq. (11). In the actual computation, the density q� is evaluated at each

cell interface and is updated at the beginning of each time step.

Step 2 (Integral representation and its approximation). The solution of the above Cauchy problem is

formally expressed in the integral form of the gain term along the characteristic line:

f ðsjþ1=2; t; fÞ ¼ exp
�
� q�t

�

�
½f0ðsjþ1=2 � f1t; 0; fÞ þ �f1ðsjþ1=2 � tf1; 0; fÞ�

þ q�
�

Z t

0

f0ðsjþ1=2 � f1½t � s�; s; fÞ exp q�ðs� tÞ
�

� �
ds: ð30Þ

The term corresponding to the initial condition and f0ðsjþ1=2 � f1½t � s�; s; fÞ in the integrand are ex-

panded as follows:

f0ðsjþ1=2 � f1t; 0; fÞ þ �f1ðsjþ1=2 � f1t; 0; fÞ � f0 � f1t
of0 þ �f1; ð31Þ

ox1
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f0ðsjþ1=2 � f1½t � s�; s; fÞ � f0 þ s
of0
ot

� f1ðt � sÞ of0
ox1

: ð32Þ

As mentioned before, f0, its derivatives, and f1 on the right hand sides of Eqs. (31) and (32) are evaluated

at ðx1; tÞ ¼ ðsjþ1=2; 0Þ (the same explanation will not be repeated again). Substituting Eqs. (31) and (32) into
Eq. (30) and carrying out the integration, we have

f ðsjþ1=2; t; fÞ ¼ exp
�
� q�t

�

�
f0

�
� f1t

of0
ox1

þ �f1

�
þ 1
h

� exp
�
� q�t

�

�i
f0

�
� f1t

of0
ox1

�

þ t
�

� �

q�
1
h

� exp
�
� q�t

�

�i� of0
ot

�
þ f1

of0
ox1

�
: ð33Þ

The time derivative of local Maxwellian at t ¼ 0 is determined by the basic equation (29). The time

derivative of f at ðx1; tÞ ¼ ðsjþ1=2; 0Þ is given by

of
ot

¼ �f1
of0
ox1

� �f1
of1
ox1

� q�f1 ðx1 ¼ sjþ1=2; t ¼ 0Þ: ð34Þ

Taking the moments and noting Eqs. (10) and (8), we have

oh

ot
¼ U0 þ �U1 ðx1 ¼ sjþ1=2; t ¼ 0Þ: ð35Þ

Then, we notice

of0
ot

¼ of0
oh

ðU0 þ �U1Þ ðx1 ¼ sjþ1=2; t ¼ 0Þ: ð36Þ

Since the contribution of the term multiplied by � in otf0 becomes higher order in the numerical flux, we

employ the time derivative evaluated by the Euler equations,

of0
ot

¼ of0
oh

U0 ðx1 ¼ sjþ1=2; t ¼ 0Þ: ð37Þ

Then, from Eq. (15), we have

f ðsjþ1=2; t; fÞ ¼ exp
�
� q�t

�

�
f0

�
� f1t

of0
ox1

þ �f1

�
þ 1
h

� exp
�
� q�t

�

�i
f0

�
� f1t

of0
ox1

�

� t
�

� �

q�
1
h

� exp
�
� q�t

�

�i�
q�f1: ð38Þ

Incidentally, Eq. (37) is obtained by substituting Eq. (33) and

f0ðsjþ1=2; t; fÞ ¼ f0ðsjþ1=2; 0; fÞ þ t
of0
ot

ðsjþ1=2; 0; fÞ; ð39Þ

into Eq. (6), as done in [13] for the case of compressible Euler equations.

Step 3 (Introduction of discontinuity). We notice that Eq. (38) is equivalent to Eq. (20). This is the con-

sequence of Step 1. However, Step 2 is not useless. The expression (38) suggests a guideline on the extension

to the case of the discontinuous initial data. We notice that the first term on the right hand side of Eq. (38)

comes from the initial data and the second and third terms come from the gain term of the BGK equation.
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If we apply Reconstruction-I to all the terms, we have Scheme-A, i.e. the Lax–Wendroff-type scheme with

central finite difference approximation of the viscous stress term and heat flow term. If we apply the simple

flux splitting to all the terms, we have Eq. (25), i.e. Scheme-B. Now, we retain the smoothness of the gain
term. Employing Reconstruction-II for the first term and Reconstruction-I for the second and third terms,

we have

ðsjþ1=2; t; fÞ ¼ exp
�
� q�t

�

�
f II
0

"
� tf1

of0
ox1

� �II

þ �f II
1

#
þ 1
h

� exp
�
� q�t

�

�i
f I
0

"
� f1t

of0
ox1

� �I
#

� t
�

� �

q�
1
h

� exp
�
� q�t

�

�i�
q�f

I
1 : ð40Þ

Hereafter, we will call the scheme for Eq. (40) Scheme-E. Incidentally, q� can be computed from f I
0 , i.e.

q� ¼ qI, or from f II
0 . In Scheme-E, we adopt q� ¼ qI.

Step 4 (Modification of Scheme-E). The GKB scheme is derived as a variant of Scheme-E. Xu ap-

proximated the second and third terms on the right hand side of Eq. (33) using the following recon-

struction.

Reconstruction-III
hðx1Þ ¼
hj þ 2ðhIIIjþ1=2 � hjÞðx1 � sjÞ=Dx; for sj 6 x1 6 sjþ1=2;

hj þ 2ðhj � hIIIj�1=2Þðx1 � sjÞ=Dx; for sj�1=2 6 x1 6 sj;

(
ð41Þ

where

hIIIjþ1=2 ¼
Z

wf II
0 df: ð42Þ

This reconstruction has already been shown schematically in Fig. 1. In order to express the formula of GKB
scheme, we introduce the functions defined by
f III
0 ¼ f0ðhIIIjþ1=2; fÞ; ð43Þ
of0
ox1

� �III

¼
2ðhIIIjþ1=2

�hjÞ
Dx

of0
oh
ðhIIIjþ1=2; fÞ; for f1 > 0;

2ðhjþ1�hIIIjþ1=2
Þ

Dx
of0
oh
ðhIIIjþ1=2; fÞ; for f1 < 0;

8<
: ð44Þ
f III
1 ¼

f1ðhIIIjþ1=2; 2½h
III
jþ1=2 � hj�=Dx; fÞ; for f1 > 0;

f1ðhIIIjþ1=2; 2½hjþ1 � hIIIjþ1=2�=Dx; fÞ; for f1 < 0:

(
ð45Þ
Further, the density at the cell interface, q�, is computed as qIII defined by

qIII ¼
Z

f II
0 df: ð46Þ
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Then, Eq. (33) becomes

f ðsjþ1=2; t; fÞ ¼ exp

�
� qIIIt

�

�
f II
0

"
� tf1

of0
ox1

� �II

þ �f II
1

#
þ 1

�
� exp

�
� qIIIt

�

��

� f III
0

"
� tf1

of0
ox1

� �III
#
þ t
�

� �

qIII
1

�
� exp

�
� qIIIt

�

���
of0
ot

"
þ f1

of0
ox1

� �III
#
: ð47Þ

In Eq. (47), the time derivative of the local Maxwellian has not yet been determined. As mentioned before,
it can be determined by making use of the orthogonality of the collision term in principle. However, two

different reconstructions are employed in Eq. (47) and the time derivative cannot be determined by Eq. (6).

Then, Xu introduced the averaged orthogonality condition:Z Dt

0

Z
wðf0 � f Þdfdt ¼ 0; ð48Þ

where f is given by Eq. (47) and f0 is given by

f0 ¼ f III
0 þ t

of0
ot

: ð49Þ

Since the formula of otf0 is easily obtained, it is omitted here. Incidentally, the averaged orthogonality

condition leads to Eq. (37) for the continuous initial data. In the actual computation of the GKB scheme,

sð¼ �=q�Þ is determined by the relation between the viscosity and pressure under the modification that takes

account of the pressure jump [15]. In the present paper, the GKB scheme means its simplest version, i.e.

s ¼ �=qIII.
In the derivation of Scheme-E, we employed Eq. (15) and did not employ the orthogonality condition

(6). Similar to this derivation, we can bypass the time averaging procedure by replacing otf0 þ f1ðox1f0Þ
III

[the third term on the right hand side of Eq. (47)] with �qIIIf III
1 . We call the resulting scheme the modified

GKB scheme.

4.2. Analysis of numerical flux

In this subsection, we analyze the numerical flux of Scheme-E and that of the GKB scheme. For this
purpose, we introduce the functional defined by

F½g� ¼
Z

f1wgdf: ð50Þ

Before proceeding to the analysis, we list the numerical fluxes of Scheme-A to Scheme-D, FA to FD,

below:

FA ¼ DtF½f I
0 � þ �DtF½f I

1 � �
Dt2

2
F f1

of0
ox1

� �I
" #

� Dt2

2
F½qIf I

1 �; ð51Þ
FB ¼ DtF½f II
0 � þ �DtF½f II

1 � � Dt2

2
F f1

of0
ox1

� �II
" #

� Dt2

2
F½qIIf II

1 �; ð52Þ
FC ¼ DtF½f II
0 � þ �DtF½f II

1 � �
Dt2

2
F f1

of0
ox1

� �II
" #

: ð53Þ
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FD ¼ DtF½f II
0 � þ �DtF½f II

1 �: ð54Þ

The expression of the numerical flux of Scheme-E, FE, and that of the GKB scheme, FGKB, are a little bit

lengthy and we show them in the following two limiting cases. For Dt � �, FE and FGKB become

FE � FGKB � FD; ð55Þ

where the higher order terms with respect to Dt are omitted in this limiting case (the same explanation will

not be repeated). That is, these schemes behave like the KFVS scheme. For � � Dt, FE becomes

FE � FA þ �

qI
F½f II

0 � f I
0 �; ð56Þ

where the higher order terms with respect to � are omitted in this limiting case (the same explanation will

not be repeated). Scheme-E becomes the Lax–Wendroff-type scheme for the compressible Euler equations

in the limit of � ¼ 0. Therefore, it is not shock capturing and is excluded from the list of candidates for

robust kinetic schemes. The numerical flux FGKB for � � Dt is evaluated in the following way. By notingR
wðf II

0 � f III
0 Þdf ¼ 0, we notice that the time derivative otf0 in Eq. (47) becomes

of0
ot

� of0
oh

ðhIIIjþ1=2; fÞDh
III; ð57Þ

where

DhIII ¼ �
Z

f1w
of0
ox1

� �III

df: ð58Þ

Then, we have

FGKB � DtF½f III
0 � � Dt2

2
F f1

of0
ox1

� �III
" #

þ Dt2

2

�
� �Dt
qIII

�
KDhIII

 
þF f1

of0
ox1

� �III
" #!

þ �

qIII
F½f II

0 � f III
0 �; ð59Þ

where K is the matrix whose elements Kij are defined by

Kij ¼
Z

f1wi

of0
ohj

ðhIIIjþ1=2; fÞdf: ð60Þ

We notice that DhIII corresponds to U0 [see Eq. (10)] and KDhIII corresponds to the numerical flux for

ðof0=ohÞU0. From Eq. (15), we notice that the third term on the right hand side of Eq. (59) corresponds to
�DtF½f1� � ðDt2=2ÞF½qf1�. The influence of Reconstruction-II survives only in the fourth term, which is

Oð�Þ and is much smaller than Dt. Thus, we conclude that the GKB scheme for � � Dt is an extension of

Scheme-A to the case of Reconstruction-III. Then, the reason why the GKB scheme works like Scheme-A

in the Blasius flow problem becomes obvious if Reconstruction-III is shown to yield an approximation that

is nearly equivalent to that of Reconstruction-I in a resolved region, which will be demonstrated in Section

4.4. Incidentally, the contribution of �f1 in the initial condition to the numerical flux is Oð�2Þ for � � Dt; the
initial condition in the form of f ¼ f0 suffices. This gives the theoretical legitimacy of the previous version

of GKB scheme [14].
Finally, we show the numerical flux of the modified GKB scheme, FMGKB, for the above two limiting

cases. For Dt � �, it is evaluated as FMGKB � FD. For � � Dt, it is evaluated as
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FMGKB � DtF½f III
0 � þ �DtF½f III

1 � � Dt2

2
F f1

of0
ox1

� �III
" #

� Dt2

2
F½qIIIf III

1 � þ �

qIII
F½f II

0 � f III
0 � ð61Þ

[cf. Eq. (56)].

4.3. New kinetic schemes

In this subsection, we derive new kinetic schemes making use of the key revealed by the analysis of the
GKB scheme in the previous subsection. We first derive a scheme on the basis of the Cauchy problem for

the BGK equation with the locally constant collision frequency (29) from the initial data in the form of the

Chapman–Enskog NS distribution function, which is the same starting point as that of the derivation of the

GKB scheme. Instead of the integral form of the BGK equation (30), we employ the splitting algorithm as

the BGK solver. This is different usage of the splitting algorithm from Pullin�s approach; the splitting al-

gorithm is directly applied to the computation of the numerical flux and the effect of the molecular collision

is explicitly taken into account. Although Reconstruction-II is employed in the approximation of the initial

data, the gain term is automatically approximated by Reconstruction-III. However, the error of the
splitting algorithm becomes larger than the intrinsic error of the Cauchy problem for � � Dt. This draw-
back is overcome by a simple modification of the initial data under the guideline of the railroad method in

Section 2.

We derive the formula of the numerical flux at the cell interface x1 ¼ sjþ1=2. Similar to the derivation of

the GKB scheme, we start with the BGK equation with the locally constant collision frequency, Eq. (29).

However, we modify the initial data slightly:

f ¼ f0 þ bf1; ð62Þ

where b is an undetermined constant and is assumed to be of the order of � or Dt. The formula of b is
obtained in the following analysis in the case of smooth initial data.

The splitting algorithm for the BGK equation consists of the free flow step solving the collisionless

Boltzmann equation,

of
ot

þ f1
of
ox1

¼ 0; ð63Þ

and the collision step solving the spatially homogeneous BGK equation,

of
ot

¼ q�
�
ðf0 � f Þ: ð64Þ

There are two choices concerning the order of the steps in the splitting algorithm; we can carry out the

collision step after the free flow step, and vice versa. Here, we carry out the free flow step first. Then, the

exact result of the splitting algorithm is expressed as

f ðsjþ1=2; t; fÞ ¼ exp
�
� q�t

�

�
fF þ 1

h
� exp

�
� q�t

�

�i
MðfFÞ; ð65Þ

where fF is the solution of the collisionless Boltzmann equation,

fF ¼ f0ðsjþ1=2 � f1t; 0; fÞ þ bf1ðsjþ1=2 � f1t; 0; fÞ; ð66Þ

and MðgÞ is the Maxwellian generated from g, i.e.

MðgÞ ¼ f0ðhg; fÞ; ð67Þ
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hg ¼
Z

wgdf: ð68Þ

We remark that f0 on the right hand side of Eq. (64) is independent of t, which follows from the or-

thogonality condition (6). We neglect the higher order terms, Oðt2Þ, OðbtÞ, etc., in fF and the macroscopic
variables for fF, i.e. hF. Then, we have

fFðt; fÞ ¼ f0ðsjþ1=2; 0; fÞ þ bf1ðsjþ1=2; 0; fÞ � tf1
of0
ox1

ðsjþ1=2; 0; fÞ; ð69Þ
hF ¼ hjþ1=2 þ tDh; ð70Þ

where

hjþ1=2 ¼
Z

wf0ðsjþ1=2; 0; fÞdf; ð71Þ
Dh ¼ �
Z

f1w
of0
ox1

ðsjþ1=2; 0; fÞdf: ð72Þ

The term bf1 in fF does not contribute to hF because of the orthogonality of f1. We neglect the higher

order terms with respect to t in the local Maxwellian generated from fF, i.e. MðfFÞ. Then, we have

MðfFÞ ¼ f0ðhjþ1=2; fÞ þ t
of0
oh

ðhjþ1=2; fÞDh: ð73Þ

From Eqs. (10) and (15), we notice

of0
oh

Dh ¼ �f1
of0
ox1

ðsjþ1=2; 0; fÞ � q�f1ðsjþ1=2; 0; fÞ: ð74Þ

Then, we have

f ðsjþ1=2; t; fÞ ¼ f0 � tf1
of0
ox1

þ ðbþ q�tÞ exp
�
� q�t

�

�
f1 � tq�f1: ð75Þ

The solution of the splitting algorithm (75) does not agree with Eq. (20) even if we put b ¼ �. Expanding
expð�q�t=�Þ with respect to t under the condition t � �, we can enjoy the agreement up to OðtÞ, as expected
from the fact that Eq. (20) is correct up to OðtÞ and the result of splitting algorithm without the truncation

of higher order terms is correct up to Oðt2Þ in this case. For �K t, however, expð�q�t=�Þ is considerably
different from the approximation by the first few terms in the Taylor expansion; the result of the error

analysis of the splitting algorithm [8] does not hold in this case. On the other hand, Strang�s splitting, i.e. the
free flow step for t=2, the collision step for t, and the free flow step for t=2, is known as a higher order time
integration method for the Boltzmann equation (see [8] for the Boltzmann equation and [3] for general

evolutionary equations). Because of the same reason as that for the conventional splitting algorithm, the

higher order accuracy is gained only for t � �.
Although the difference between Eqs. (20) and (75) is orthogonal to w, it does not vanish in the numerical

flux, since
R
f1wf1 df 6¼ 0. Fortunately, we can avoid the error by adjusting the value of b in the following

simple way. We require that the resulting numerical flux for Eq. (75) is equal to that for Eq. (20). Then, we

have the formula of b,
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Z Dt

0

ðbþ q�tÞ exp
�
� q�t

�

�
dt ¼ �Dt; ð76Þ

which is reduced to

b ¼ q�Dt coth
q�Dt
2�

� �
� �: ð77Þ

The b is a monotonically increasing function of Dt, limDt!0 b ¼ �, and b � q�Dt for � � Dt.
Let us now consider the extension to the case of Reconstruction-II. Although the contribution of f II

1 in

the initial condition to the macroscopic variables at the cell-interface is not zero, it is neglected in the

following computations as in the case of the GKB scheme. Under this simplification, we have q� ¼ qIII

and

hF ¼ hIIIjþ1=2 þ tDhII; ð78Þ

where

DhII ¼ �
Z

f1w
of0
ox1

� �II

df: ð79Þ

Then, we have

f ðsjþ1=2; t; fÞ ¼ exp

�
� qIIIt

�

�
f II
0

"
� tf1

of0
ox1

� �II

þ bf II
1

#

þ 1

�
� exp

�
� qIIIt

�

��
f III
0

�
þ t

of0
oh

ðhIIIjþ1=2; fÞDh
II

�
; ð80Þ

where b is determined by Eq. (77) with q� ¼ qIII. We will call the scheme for Eqs. (80) and (79) Scheme-F.

The numerical flux of Scheme-F is evaluated as

FF � FD; ð81Þ

for Dt � � and

FF � Dt F½f III
0 �

	
þ �F½f II

1 �


þ Dt2

2
KDhII þ �

qIII
Fðf II

0 � f III
0 Þ; ð82Þ

for � � Dt, where K is the same matrix as that defined by Eq. (60). The vector KDhII corresponds to

the numerical flux for ðof0=ohÞU0ð¼ �f1ox1f0 � q�f1Þ as in the case of the GKB scheme, where the
corresponding vector is given by KDhIII [see Eq. (59)]. The influence of Reconstruction-II does

not survive in the dominant part of the numerical flux DtF½f0�. Incidentally, the numerical flux of

Scheme-F becomes

FF � DtF½f III
0 � þ Dt2

2
KDhII þ �

qIII
Fðf II

0 � f III
0 Þ; ð83Þ

without the modification of initial data, i.e. b ¼ �. That is, the part of the numerical flux corresponding to
the viscous stress and heat flow, �DtF½f1�, is canceled out by the error of the splitting algorithm.

The analyses of the GKB scheme, the modified GKB scheme, and Scheme-F for � � Dt suggest the
following family of kinetic solutions for the numerical flux:
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f ¼ f III
0 þ �f a

1 � tf1
of0
ox1

� �b

� tqcf c
1 ; ð84Þ

where the superscripts a–c mean the way of reconstruction. In this family, the dominant term f0 is always
approximated by Reconstruction-III. We call the scheme for Eq. (84) with a ¼ b ¼ c ¼ III Scheme-G,

which is the direct extension of Scheme-A to the case of Reconstruction-III. This scheme will be tested
together with Scheme-F in Section 4.4.

4.4. Numerical tests of new schemes

In this subsection, we first show the performance of Scheme-F and Scheme-G in the Blasius flow

problem. Fig. 8 shows the result of Scheme-F [(120� 30) cell system, Dt ¼ 0:01]. Although the agreement

with the exact solution for V is not as good as in the case of Scheme-A (u2 is of the order of 10�3 or 10�4 and

the discrepancy is magnified considerably in the figure), Scheme-F yields much better results than Scheme-
B. Without the modification of the initial data, i.e. b ¼ �, the result of Scheme-F becomes very poor (Fig. 9).

As mentioned before, the real viscosity is canceled out by the error of the splitting algorithm. This is an

example of the boundary-layer made by the numerical viscosity and the numerical boundary-layer is

thinner than the physical one. On the other hand, Scheme-G yields excellent results (Fig. 10);
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Fig. 8. Blasius flow. The results of Scheme-F for 120� 30 cell system and Dt ¼ 0:01.
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Fig. 9. Blasius flow. The results of Scheme-F (b ¼ �) for 120� 30 cell system and Dt ¼ 0:01.
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Reconstruction-III becomes nearly identical to Reconstruction-I in this case. Incidentally, it is observed in

the case of Scheme-A that the density oscillates slightly in a region between the front of the plate and the

upstream boundary (no figure). The amplitude of the oscillations is of the order of 10�3, while the mag-
nitude of q is of the order of unity. The amplitude is of the order of 10�5 in the case of Scheme-G and no

oscillation is observed in the case of Scheme-F. Scheme-E, which inherits the thickest blood of Scheme-A,

gives excellent results for U and V and the unfavorable oscillations are almost absent. Presumably, the

kinematic dissipation created by Reconstruction-III and the survival of Reconstruction-II, e.g. the last term

on the right hand side of Eq. (56), though negligibly small, contribute to the suppression of the small but

unfavorable oscillations.

Lastly, we demonstrate the performance of Scheme-F as the Euler solver (� ¼ 0). The results in Sod

test case are shown in Fig. 11. Reconstruction-III is created from Reconstruction-II and Van Leer
limiter is applied to the slope of Reconstruction-II. Although the shock wave and the contact dis-
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Fig. 10. Blasius flow. The results of Scheme-G for 120� 30 cell system and Dt ¼ 0:01.
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Fig. 11. Sod test case (t ¼ 0:3). The solid lines indicate the exact solution and the symbols d indicate the results of Scheme-F (� ¼ 0)

for Dx ¼ 0:01 (100 cells) and Dt=Dx ¼ 0:25.
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continuity are sharply captured without overshoot and undershoot, spurious oscillations are observed

around the tail of the expansion wave. Scheme-G and Scheme-F yield almost the same results in this

test case. Figs. 12 and 13 show the results in Sj€ogreen test case and those in Woodward–Colella test
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Fig. 12. Sj€ogreen test case (t ¼ 0:1, Dt=Dx ¼ 0:25). The solid lines indicate the results of Scheme-F (� ¼ 0) for Dx ¼ 0:001 (1000 cells)
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Fig. 13. Woodward–Colella test case (t ¼ 0:038�
ffiffiffi
2

p
, Dt=Dx ¼ 0:01). The solid lines indicate the results of Scheme-F (� ¼ 0) for

Dx ¼ 0:001 (1000 cells) and the symbolsd indicate those for Dx ¼ 0:0025 (400 cells). The factor
ffiffiffi
2

p
is for the adjustment of time due to

the difference of the unit time; the unit time is Lð2RT0Þ�1=2
in the present paper and LðRT0Þ�1=2

in the literature. The present result is for

c ¼ 5=3 and the results seen in the literature are for c ¼ 1:4.
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case, respectively. The results of these test cases for c ¼ Cp=Cv ¼ 7=5 are often found in the literature

but the present computations are for the case of monatomic gas, i.e. c ¼ 5=3. In these test cases,

Scheme-F works very well as a robust kinetic scheme. On the other hand, Scheme-G does not work in
Sj€ogreen test case. It works without nonlinear limiter but two small humps appear around both ends of

the rarefaction region. If the nonlinear limiter is employed, these humps disappear but the initial crack

becomes steeper and the computation finally diverges. So, Scheme-G is excluded from the list of robust

kinetic schemes. Incidentally, the computational cost of Scheme-F is almost the same as that of

Scheme-B.
4.5. Hybrid scheme

The spurious oscillations observed in Sod test case can be suppressed by increasing the resolution of the

cell system or adding small viscosity (e.g. � ¼ 0:001). In the latter case, the shock wave and the contact

discontinuity are slightly smeared, however. The improvement can also be brought by modifying Scheme-F

in the following way:

f ðsjþ1=2; t; fÞ ¼ exp

�
� qIIIt

�c

�
f II
0

"
� tf1

of0
ox1

� �II

� qIIf II
1

#
þ �f a

1

þ 1

�
� exp

�
� qIIIt

�c

��
f III
0

�
þ t

of0
oh

ðhIIIjþ1=2; fÞDh
II

�
; ð85Þ

where the superscript �a� means the reconstruction, i.e. a ¼ I–III, and qIII=�c should not necessarily be re-

lated to the real viscosity, i.e. �c 6¼ �. This is a linear combination of Scheme-B and Scheme-F for � ¼ 0 plus

the term �f1, which gives the viscosity and thermal conductivity. The pair of expð�qIIIt=�cÞ and

1� expð�qIIIt=�cÞ acts as a nonlinear controller; the parameter �c does not have any physical meaning.
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Fig. 14. Sod test case (t ¼ 0:3). The solid lines indicate the exact solution and the symbols d indicate the results of the modified

Scheme-F (� ¼ 0 and �c ¼ 0:001) for Dx ¼ 0:01 (100 cells) and Dt=Dx ¼ 0:25.
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Similar to the actual computation of the GKB scheme, the value of �c can be determined locally. We call the

scheme based on Eq. (85) the modified Scheme-F. The results of the modified Scheme-F for �c ¼ 0:001
(fixed) and � ¼ 0 in Sod test case are shown in Fig. 14. By blending the numerical flux of Scheme-B slightly,
the oscillations around the tail of the expansion wave are suppressed; the shock and contact discontinuities

are sharply captured as before. The modified Scheme-F also works very well in the other test cases (no

figure).
5. Discussions

In a resolved region, the kinematic dissipation should be equal to or smaller than the dynamical dissi-
pation. It should be sufficiently large in an unresolved region, such as a shock layer, for the suppression of

spurious oscillations. Reconstruction-I fulfills only the former requirement and Reconstruction-II fulfills

only the latter. Reconstruction-III, which is a continuous reconstruction created from Reconstruction-II,

fulfills both of them. Although the initial data is made by Reconstruction-II in the GKB scheme and

Scheme-F, the large kinematic dissipation created by Reconstruction-II is avoided by the management of

discontinuous reconstruction in their evolution stages.

The importance of management of the discontinuous reconstruction becomes more striking in the steady

case. As mentioned in Section 3.2, the result of Scheme-D is almost the same as that of Scheme-B in the
Blasius flow problem. While Scheme-B takes account of the derivative of the Maxwellian and the collision

effect in the numerical flux, Scheme-D takes account of none of them. The reason for this mysterious

reversion is explained as follows. From Eq. (15), we notice that the contribution of these terms to the

numerical flux is expressed as

�Dt2

2
F f1

of0
ox1

�
þ qf1

�
¼ Dt2

2
F

of0
oh

U0

� �
: ð86Þ

The U0 is the time derivative corresponding to the Euler equation and it becomes ��U1 at the steady state,

since oh=ot ¼ U0 þ �U1 ¼ 0. So, the contribution of these terms reduces to Oð�Dt2Þ; they cancel out each
other. This scenario is supported by the agreement between the result of the scheme based on the formula

without the derivative and the collision,

f ¼ f III
0 þ �f III

1 ; ð87Þ

and that of Scheme-G; similar to Scheme-G, the scheme based on Eq. (87) yields excellent results in the

Blasius flow problem (no figure).

As a promising candidate for the schemes which are robust and accurate for both shock and boundary-

layer flows, we finally proposed the modified Scheme-F, Eq. (85), which is a hybrid of two kinetic schemes,

Scheme-F and Scheme-B for the compressible Euler equations, plus the viscous term. These kinetic Euler

solvers have the common theoretical basis, i.e. the rigorous kinetic equation for the compressible Euler

equations derived by the railroad method, i.e. Eq. (17), and consequently, the second order accuracy in time

is gained in each scheme. Scheme-B inherits the advantage and disadvantage of the flux vector splitting
(FVS) schemes, i.e. the robustness and the excessive numerical dissipation. Scheme-F is regarded as a

fortified Lax–Wendroff scheme with the armament of the kinetic continuous reconstruction, which merges

the information at both sides of the cell-interface and yields large numerical dissipation in an unresolved

region. The less-dissipative nature of Scheme-F in a resolved region is confirmed in the Blasius flow

problem and its robustness is demonstrated in the Sj€ogreen and Woodward–Colella test cases. The

drawback of Scheme-F, the spurious oscillations around the tail of the expansion wave found in Sod test

case, is overcome by slightly blending the numerical flux of Scheme-B. Scheme-F is not categorized as FVS



138 T. Ohwada, S. Kobayashi / Journal of Computational Physics 197 (2004) 116–138
and the present hybrid approach is not the improvement of FVS by removing the excessive numerical

dissipation, such as EFMO scheme developed by Moschetta and Pullin [6] and AUSMDV scheme devel-

oped by Wada and Liou [12].
In the present paper, we consider the kinetic schemes for the compressible NS equations derived from the

BGK equation. The viscosity and thermal conductivity in this NS system are proportional to T , while they
are proportional to T s (1=26 s6 1) for the realistic molecular models (s ¼ 1=2 for hard-sphere molecules

and s ¼ 1 for Maxwell molecules). The temperature dependence of these coefficients can easily be adjusted

by introducing the temperature dependent collision frequency into the BGK equation; the value of Ac may

depend on T . It is well-known, however, that the Prandtl number in the NS system for the BGK equation is

equal to unity, while that for the original Boltzmann equation is (exactly or approximately) equal to 2/3.

Although the adjustment of Prandtl number can be done at the numerical level (see e.g. [15]), the con-
struction of the kinetic scheme on the basis of the full Boltzmann equation is preferable when we consider

the kinetic scheme as a Boltzmann solver for small mean free path; the kinetic scheme and the DSMC are

employed as the hybrid approach. There are several ways of the extension to the compressible NS equation

for the full Boltzmann equation. The principle of the extension is given by the railroad method for the full

Boltzmann equation [10]; f1 multiplied by q in Eq. (20) is left as it is but the one multiplied by � is replaced
by f1 for the Boltzmann equation (the definition of � is also changed).
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